面向应用的计算机网络
Contents
计算机网络基础:
网络分层模型:
大致上有两种的分类,第一种是OSI七层体系结构,具体分层以及功能如下:

第二种是简化的TCP/IP分层,具体分层如下:
- 应用层
- 传输层
- 网络层
- 网络接口层

为什么要分层?
- 各层之间相互独立:各层之间相互独立,各层之间不需要关心其他层是如何实现的,只需要知道自己如何调用下层提供好的功能就可以了(可以简单理解为接口调用)。这个和我们对开发时系统进行分层是一个道理。
- 提高了灵活性和可替换性:每一层都可以使用最适合的技术来实现,你只需要保证你提供的功能以及暴露的接口的规则没有改变就行了。并且,每一层都可以根据需要进行修改或替换,而不会影响到整个网络的结构。这个和我们平时开发系统的时候要求的高内聚、低耦合的原则也是可以对应上的。
- 大问题化小:分层可以将复杂的网络问题分解为许多比较小的、界线比较清晰简单的小问题来处理和解决。这样使得复杂的计算机网络系统变得易于设计,实现和标准化。 这个和我们平时开发的时候,一般会将系统功能分解,然后将复杂的问题分解为容易理解的更小的问题是相对应的,这些较小的问题具有更好的边界(目标和接口)定义。
应用层:

- HTTP(Hypertext Transfer Protocol,超文本传输协议):基于 TCP 协议,是一种用于传输超文本和多媒体内容的协议,主要是为 Web 浏览器与 Web 服务器之间的通信而设计的。当我们使用浏览器浏览网页的时候,我们网页就是通过 HTTP 请求进行加载的。
- SMTP(Simple Mail Transfer Protocol,简单邮件发送协议):基于 TCP 协议,是一种用于发送电子邮件的协议。注意 ⚠️:SMTP 协议只负责邮件的发送,而不是接收。要从邮件服务器接收邮件,需要使用 POP3 或 IMAP 协议。
- POP3/IMAP(邮件接收协议):基于 TCP 协议,两者都是负责邮件接收的协议。IMAP 协议是比 POP3 更新的协议,它在功能和性能上都更加强大。IMAP 支持邮件搜索、标记、分类、归档等高级功能,而且可以在多个设备之间同步邮件状态。几乎所有现代电子邮件客户端和服务器都支持 IMAP。
- FTP(File Transfer Protocol,文件传输协议) : 基于 TCP 协议,是一种用于在计算机之间传输文件的协议,可以屏蔽操作系统和文件存储方式。注意 ⚠️:FTP 是一种不安全的协议,因为它在传输过程中不会对数据进行加密。建议在传输敏感数据时使用更安全的协议,如 SFTP。
- Telnet(远程登陆协议):基于 TCP 协议,用于通过一个终端登陆到其他服务器。Telnet 协议的最大缺点之一是所有数据(包括用户名和密码)均以明文形式发送,这有潜在的安全风险。这就是为什么如今很少使用 Telnet,而是使用一种称为 SSH 的非常安全的网络传输协议的主要原因。
- SSH(Secure Shell Protocol,安全的网络传输协议):基于 TCP 协议,通过加密和认证机制实现安全的访问和文件传输等业务
- RTP(Real-time Transport Protocol,实时传输协议):通常基于 UDP 协议,但也支持 TCP 协议。它提供了端到端的实时传输数据的功能,但不包含资源预留存、不保证实时传输质量,这些功能由 WebRTC 实现。
- DNS(Domain Name System,域名管理系统): 基于 UDP 协议,用于解决域名和 IP 地址的映射问题。
网络层

- IP(Internet Protocol,网际协议):TCP/IP 协议中最重要的协议之一,属于网络层的协议,主要作用是定义数据包的格式、对数据包进行路由和寻址,以便它们可以跨网络传播并到达正确的目的地。目前 IP 协议主要分为两种,一种是过去的 IPv4,另一种是较新的 IPv6,目前这两种协议都在使用,但后者已经被提议来取代前者。
- ARP(Address Resolution Protocol,地址解析协议):ARP 协议解决的是网络层地址和链路层地址之间的转换问题。因为一个 IP 数据报在物理上传输的过程中,总是需要知道下一跳(物理上的下一个目的地)该去往何处,但 IP 地址属于逻辑地址,而 MAC 地址才是物理地址,ARP 协议解决了 IP 地址转 MAC 地址的一些问题。
- ICMP(Internet Control Message Protocol,互联网控制报文协议):一种用于传输网络状态和错误消息的协议,常用于网络诊断和故障排除。例如,Ping 工具就使用了 ICMP 协议来测试网络连通性。
- NAT(Network Address Translation,网络地址转换协议):NAT 协议的应用场景如同它的名称——网络地址转换,应用于内部网到外部网的地址转换过程中。具体地说,在一个小的子网(局域网,LAN)内,各主机使用的是同一个 LAN 下的 IP 地址,但在该 LAN 以外,在广域网(WAN)中,需要一个统一的 IP 地址来标识该 LAN 在整个 Internet 上的位置。
- OSPF(Open Shortest Path First,开放式最短路径优先):一种内部网关协议(Interior Gateway Protocol,IGP),也是广泛使用的一种动态路由协议,基于链路状态算法,考虑了链路的带宽、延迟等因素来选择最佳路径。
- RIP(Routing Information Protocol,路由信息协议):一种内部网关协议(Interior Gateway Protocol,IGP),也是一种动态路由协议,基于距离向量算法,使用固定的跳数作为度量标准,选择跳数最少的路径作为最佳路径。
- BGP(Border Gateway Protocol,边界网关协议):一种用来在路由选择域之间交换网络层可达性信息(Network Layer Reachability Information,NLRI)的路由选择协议,具有高度的灵活性和可扩展性。
HTTP
从输入URL到展示页面到底发生了什么?

- 在浏览器中输入指定网页的 URL。
- 浏览器通过 DNS 协议,获取域名对应的 IP 地址。
- 浏览器根据 IP 地址和端口号,向目标服务器发起一个 TCP 连接请求。
- 浏览器在 TCP 连接上,向服务器发送一个 HTTP 请求报文,请求获取网页的内容。
- 服务器收到 HTTP 请求报文后,处理请求,并返回 HTTP 响应报文给浏览器。
- 浏览器收到 HTTP 响应报文后,解析响应体中的 HTML 代码,渲染网页的结构和样式,同时根据 HTML 中的其他资源的 URL(如图片、CSS、JS 等),再次发起 HTTP 请求,获取这些资源的内容,直到网页完全加载显示。
- 浏览器在不需要和服务器通信时,可以主动关闭 TCP 连接,或者等待服务器的关闭请求。
HTTP Header中常见字段
请求头字段名 | 说明 | 示例 |
---|---|---|
Accept | 能够接受的回应内容类型(Content-Types)。 | Accept: text/plain |
Accept-Charset | 能够接受的字符集 | Accept-Charset: utf-8 |
Accept-Datetime | 能够接受的按照时间来表示的版本 | Accept-Datetime: Thu, 31 May 2007 20:35:00 GMT |
Accept-Encoding | 能够接受的编码方式列表。参考 HTTP 压缩。 | Accept-Encoding: gzip, deflate |
Accept-Language | 能够接受的回应内容的自然语言列表。 | Accept-Language: en-US |
Authorization | 用于超文本传输协议的认证的认证信息 | Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ== |
Cache-Control | 用来指定在这次的请求/响应链中的所有缓存机制 都必须 遵守的指令 | Cache-Control: no-cache |
Connection | 该浏览器想要优先使用的连接类型 | Connection: keep-alive |
Content-Length | 以八位字节数组(8 位的字节)表示的请求体的长度 | Content-Length: 348 |
Content-MD5 | 请求体的内容的二进制 MD5 散列值,以 Base64 编码的结果 | Content-MD5: Q2hlY2sgSW50ZWdyaXR5IQ== |
Content-Type | 请求体的多媒体类型(用于 POST 和 PUT 请求中) | Content-Type: application/x-www-form-urlencoded |
Cookie | 之前由服务器通过 Set-Cookie(下文详述)发送的一个超文本传输协议 Cookie | Cookie: $Version=1; Skin=new; |
Date | 发送该消息的日期和时间(按照 RFC 7231 中定义的”超文本传输协议日期”格式来发送) | Date: Tue, 15 Nov 1994 08:12:31 GMT |
Expect | 表明客户端要求服务器做出特定的行为 | Expect: 100-continue |
From | 发起此请求的用户的邮件地址 | From: user@example.com |
Host | 服务器的域名(用于虚拟主机),以及服务器所监听的传输控制协议端口号。如果所请求的端口是对应的服务的标准端口,则端口号可被省略。 | Host: en.wikipedia.org |
If-Match | 仅当客户端提供的实体与服务器上对应的实体相匹配时,才进行对应的操作。主要作用是用于像 PUT 这样的方法中,仅当从用户上次更新某个资源以来,该资源未被修改的情况下,才更新该资源。 | If-Match: “737060cd8c284d8af7ad3082f209582d” |
If-Modified-Since | 允许服务器在请求的资源自指定的日期以来未被修改的情况下返回 304 Not Modified 状态码 | If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT |
If-None-Match | 允许服务器在请求的资源的 ETag 未发生变化的情况下返回 304 Not Modified 状态码 | If-None-Match: “737060cd8c284d8af7ad3082f209582d” |
If-Range | 如果该实体未被修改过,则向我发送我所缺少的那一个或多个部分;否则,发送整个新的实体 | If-Range: “737060cd8c284d8af7ad3082f209582d” |
If-Unmodified-Since | 仅当该实体自某个特定时间以来未被修改的情况下,才发送回应。 | If-Unmodified-Since: Sat, 29 Oct 1994 19:43:31 GMT |
Max-Forwards | 限制该消息可被代理及网关转发的次数。 | Max-Forwards: 10 |
Origin | 发起一个针对跨来源资源共享的请求。 | Origin: http://www.example-social-network.com |
Pragma | 与具体的实现相关,这些字段可能在请求/回应链中的任何时候产生多种效果。 | Pragma: no-cache |
Proxy-Authorization | 用来向代理进行认证的认证信息。 | Proxy-Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ== |
Range | 仅请求某个实体的一部分。字节偏移以 0 开始。参见字节服务。 | Range: bytes=500-999 |
Referer | 表示浏览器所访问的前一个页面,正是那个页面上的某个链接将浏览器带到了当前所请求的这个页面。 | Referer: http://en.wikipedia.org/wiki/Main_Page |
TE | 浏览器预期接受的传输编码方式:可使用回应协议头 Transfer-Encoding 字段中的值; | TE: trailers, deflate |
Upgrade | 要求服务器升级到另一个协议。 | Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11 |
User-Agent | 浏览器的浏览器身份标识字符串 | User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:12.0) Gecko/20100101 Firefox/21.0 |
Via | 向服务器告知,这个请求是由哪些代理发出的。 | Via: 1.0 fred, 1.1 example.com (Apache/1.1) |
Warning | 一个一般性的警告,告知,在实体内容体中可能存在错误。 | Warning: 199 Miscellaneous warning |

- 多路复用(Multiplexing):HTTP/2.0 在同一连接上可以同时传输多个请求和响应(可以看作是 HTTP/1.1 中长链接的升级版本),互不干扰。HTTP/1.1 则使用串行方式,每个请求和响应都需要独立的连接,而浏览器为了控制资源会有 6-8 个 TCP 连接的限制。这使得 HTTP/2.0 在处理多个请求时更加高效,减少了网络延迟和提高了性能。
- 二进制帧(Binary Frames):HTTP/2.0 使用二进制帧进行数据传输,而 HTTP/1.1 则使用文本格式的报文。二进制帧更加紧凑和高效,减少了传输的数据量和带宽消耗。
- 队头阻塞:HTTP/2 引入了多路复用技术,允许多个请求和响应在单个 TCP 连接上并行交错传输,解决了 HTTP/1.1 应用层的队头阻塞问题,但 HTTP/2 依然受到 TCP 层队头阻塞 的影响。
- 头部压缩(Header Compression):HTTP/1.1 支持
Body
压缩,Header
不支持压缩。HTTP/2.0 支持对Header
压缩,使用了专门为Header
压缩而设计的 HPACK 算法,减少了网络开销。 - 服务器推送(Server Push):HTTP/2.0 支持服务器推送,可以在客户端请求一个资源时,将其他相关资源一并推送给客户端,从而减少了客户端的请求次数和延迟。而 HTTP/1.1 需要客户端自己发送请求来获取相关资源。


- 传输协议:HTTP/2.0 是基于 TCP 协议实现的,HTTP/3.0 新增了 QUIC(Quick UDP Internet Connections) 协议来实现可靠的传输,提供与 TLS/SSL 相当的安全性,具有较低的连接和传输延迟。你可以将 QUIC 看作是 UDP 的升级版本,在其基础上新增了很多功能比如加密、重传等等。HTTP/3.0 之前名为 HTTP-over-QUIC,从这个名字中我们也可以发现,HTTP/3 最大的改造就是使用了 QUIC。
- 连接建立:HTTP/2.0 需要经过经典的 TCP 三次握手过程(由于安全的 HTTPS 连接建立还需要 TLS 握手,共需要大约 3 个 RTT)。由于 QUIC 协议的特性(TLS 1.3,TLS 1.3 除了支持 1 个 RTT 的握手,还支持 0 个 RTT 的握手)连接建立仅需 0-RTT 或者 1-RTT。这意味着 QUIC 在最佳情况下不需要任何的额外往返时间就可以建立新连接。
- 头部压缩:HTTP/2.0 使用 HPACK 算法进行头部压缩,而 HTTP/3.0 使用更高效的 QPACK 头压缩算法。
- 队头阻塞:HTTP/2.0 多请求复用一个 TCP 连接,一旦发生丢包,就会阻塞住所有的 HTTP 请求。由于 QUIC 协议的特性,HTTP/3.0 在一定程度上解决了队头阻塞(Head-of-Line blocking, 简写:HOL blocking)问题,一个连接建立多个不同的数据流,这些数据流之间独立互不影响,某个数据流发生丢包了,其数据流不受影响(本质上是多路复用+轮询)。
- 连接迁移:HTTP/3.0 支持连接迁移,因为 QUIC 使用 64 位 ID 标识连接,只要 ID 不变就不会中断,网络环境改变时(如从 Wi-Fi 切换到移动数据)也能保持连接。而 TCP 连接是由(源 IP,源端口,目的 IP,目的端口)组成,这个四元组中一旦有一项值发生改变,这个连接也就不能用了。
- 错误恢复:HTTP/3.0 具有更好的错误恢复机制,当出现丢包、延迟等网络问题时,可以更快地进行恢复和重传。而 HTTP/2.0 则需要依赖于 TCP 的错误恢复机制。
- 安全性:在 HTTP/2.0 中,TLS 用于加密和认证整个 HTTP 会话,包括所有的 HTTP 头部和数据负载。TLS 的工作是在 TCP 层之上,它加密的是在 TCP 连接中传输的应用层的数据,并不会对 TCP 头部以及 TLS 记录层头部进行加密,所以在传输的过程中 TCP 头部可能会被攻击者篡改来干扰通信。而 HTTP/3.0 的 QUIC 对整个数据包(包括报文头和报文体)进行了加密与认证处理,保障安全性。

HTTP 是不保存状态的协议, 如何保存用户状态?
HTTP 是一种不保存状态,即无状态(stateless)协议。也就是说 HTTP 协议自身不对请求和响应之间的通信状态进行保存。那么我们如何保存用户状态呢?Session 机制的存在就是为了解决这个问题,Session 的主要作用就是通过服务端记录用户的状态。典型的场景是购物车,当你要添加商品到购物车的时候,系统不知道是哪个用户操作的,因为 HTTP 协议是无状态的。服务端给特定的用户创建特定的 Session 之后就可以标识这个用户并且跟踪这个用户了(一般情况下,服务器会在一定时间内保存这个 Session,过了时间限制,就会销毁这个 Session)。
在服务端保存 Session 的方法很多,最常用的就是内存和数据库(比如是使用内存数据库 redis 保存)。既然 Session 存放在服务器端,那么我们如何实现 Session 跟踪呢?大部分情况下,我们都是通过在 Cookie 中附加一个 Session ID 来方式来跟踪。
DNS 的作用是什么?

DNS 服务器自底向上可以依次分为以下几个层级(所有 DNS 服务器都属于以下四个类别之一):
- 根 DNS 服务器。根 DNS 服务器提供 TLD 服务器的 IP 地址。目前世界上只有 13 组根服务器,我国境内目前仍没有根服务器。
- 顶级域 DNS 服务器(TLD 服务器)。顶级域是指域名的后缀,如
com
、org
、net
和edu
等。国家也有自己的顶级域,如uk
、fr
和ca
。TLD 服务器提供了权威 DNS 服务器的 IP 地址。 - 权威 DNS 服务器。在因特网上具有公共可访问主机的每个组织机构必须提供公共可访问的 DNS 记录,这些记录将这些主机的名字映射为 IP 地址。
- 本地 DNS 服务器。每个 ISP(互联网服务提供商)都有一个自己的本地 DNS 服务器。当主机发出 DNS 请求时,该请求被发往本地 DNS 服务器,它起着代理的作用,并将该请求转发到 DNS 层次结构中。严格说来,不属于 DNS 层级结构
世界上并不是只有 13 台根服务器,这是很多人普遍的误解,网上很多文章也是这么写的。实际上,现在根服务器数量远远超过这个数量。最初确实是为 DNS 根服务器分配了 13 个 IP 地址,每个 IP 地址对应一个不同的根 DNS 服务器。然而,由于互联网的快速发展和增长,这个原始的架构变得不太适应当前的需求。为了提高 DNS 的可靠性、安全性和性能,目前这 13 个 IP 地址中的每一个都有多个服务器,截止到 2023 年底,所有根服务器之和达到了 1700 多台,未来还会继续增加。
tip:在实际使用中,有一种情况下,浏览器是可以不必动用 DNS 就可以获知域名和 IP 地址的映射的。浏览器在本地会维护一个hosts
列表,一般来说浏览器要先查看要访问的域名是否在hosts
列表中,如果有的话,直接提取对应的 IP 地址记录,就好了。如果本地hosts
列表内没有域名-IP 对应记录的话,那么 DNS 就闪亮登场了。
TCP/UDP区别
- 是否面向连接:UDP 在传送数据之前不需要先建立连接。而 TCP 提供面向连接的服务,在传送数据之前必须先建立连接,数据传送结束后要释放连接。
- 是否是可靠传输:远地主机在收到 UDP 报文后,不需要给出任何确认,并且不保证数据不丢失,不保证是否顺序到达。TCP 提供可靠的传输服务,TCP 在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制。通过 TCP 连接传输的数据,无差错、不丢失、不重复、并且按序到达。
- 是否有状态:这个和上面的“是否可靠传输”相对应。TCP 传输是有状态的,这个有状态说的是 TCP 会去记录自己发送消息的状态比如消息是否发送了、是否被接收了等等。为此 ,TCP 需要维持复杂的连接状态表。而 UDP 是无状态服务,简单来说就是不管发出去之后的事情了(这很渣男!)。
- 传输效率:由于使用 TCP 进行传输的时候多了连接、确认、重传等机制,所以 TCP 的传输效率要比 UDP 低很多。
- 传输形式:TCP 是面向字节流的,UDP 是面向报文的。
- 首部开销:TCP 首部开销(20 ~ 60 字节)比 UDP 首部开销(8 字节)要大。
- 是否提供广播或多播服务:TCP 只支持点对点通信,UDP 支持一对一、一对多、多对一、多对多;
传输层:
TCP 三次握手和四次挥手(传输层)

- 一次握手:客户端发送带有 SYN(SEQ=x) 标志的数据包 -> 服务端,然后客户端进入 SYN_SEND 状态,等待服务端的确认;
- 二次握手:服务端发送带有 SYN+ACK(SEQ=y,ACK=x+1) 标志的数据包 –> 客户端,然后服务端进入 SYN_RECV 状态;
- 三次握手:客户端发送带有 ACK(ACK=y+1) 标志的数据包 –> 服务端,然后客户端和服务端都进入ESTABLISHED 状态,完成 TCP 三次握手。
补充:
在 TCP 三次握手过程中,Linux 内核会维护两个队列来管理连接请求:
- 半连接队列(也称 SYN Queue):当服务端收到客户端的 SYN 请求时,此时双方还没有完全建立连接,它会把半连接状态的连接放在半连接队列。
- 全连接队列(也称 Accept Queue):当服务端收到客户端对 ACK 响应时,意味着三次握手成功完成,服务端会将该连接从半连接队列移动到全连接队列。如果未收到客户端的 ACK 响应,会进行重传,重传的等待时间通常是指数增长的。如果重传次数超过系统规定的最大重传次数,系统将从半连接队列中删除该连接信息。

- 第一次挥手:客户端发送一个 FIN(SEQ=x) 标志的数据包->服务端,用来关闭客户端到服务端的数据传送。然后客户端进入 FIN-WAIT-1 状态。
- 第二次挥手:服务端收到这个 FIN(SEQ=X) 标志的数据包,它发送一个 ACK (ACK=x+1)标志的数据包->客户端 。然后服务端进入 CLOSE-WAIT 状态,客户端进入 FIN-WAIT-2 状态。
- 第三次挥手:服务端发送一个 FIN (SEQ=y)标志的数据包->客户端,请求关闭连接,然后服务端进入 LAST-ACK 状态。
- 第四次挥手:客户端发送 ACK (ACK=y+1)标志的数据包->服务端,然后客户端进入TIME-WAIT状态,服务端在收到 ACK (ACK=y+1)标志的数据包后进入 CLOSE 状态。此时如果客户端等待 2MSL 后依然没有收到回复,就证明服务端已正常关闭,随后客户端也可以关闭连接了。
只要四次挥手没有结束,客户端和服务端就可以继续传输数据!
为什么不能把服务端发送的 ACK 和 FIN 合并起来,变成三次挥手?
因为服务端收到客户端断开连接的请求时,可能还有一些数据没有发完,这时先回复 ACK,表示接收到了断开连接的请求。等到数据发完之后再发 FIN,断开服务端到客户端的数据传送。
TCP 如何保证传输的可靠性?
- 基于数据块传输:应用数据被分割成 TCP 认为最适合发送的数据块,再传输给网络层,数据块被称为报文段或段。
- 对失序数据包重新排序以及去重:TCP 为了保证不发生丢包,就给每个包一个序列号,有了序列号能够将接收到的数据根据序列号排序,并且去掉重复序列号的数据就可以实现数据包去重。
- 校验和 : TCP 将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP 将丢弃这个报文段和不确认收到此报文段。
- 重传机制 : 在数据包丢失或延迟的情况下,重新发送数据包,直到收到对方的确认应答(ACK)。TCP 重传机制主要有:基于计时器的重传(也就是超时重传)、快速重传(基于接收端的反馈信息来引发重传)、SACK(在快速重传的基础上,返回最近收到的报文段的序列号范围,这样客户端就知道,哪些数据包已经到达服务器了)、D-SACK(重复 SACK,在 SACK 的基础上,额外携带信息,告知发送方有哪些数据包自己重复接收了)。关于重传机制的详细介绍,可以查看详解 TCP 超时与重传机制这篇文章。
- 流量控制 : TCP 连接的每一方都有固定大小的缓冲空间,TCP 的接收端只允许发送端发送接收端缓冲区能接纳的数据。当接收方来不及处理发送方的数据,能提示发送方降低发送的速率,防止包丢失。TCP 使用的流量控制协议是可变大小的滑动窗口协议(TCP 利用滑动窗口实现流量控制)。
- 拥塞控制 : 当网络拥塞时,减少数据的发送。TCP 在发送数据的时候,需要考虑两个因素:一是接收方的接收能力,二是网络的拥塞程度。接收方的接收能力由滑动窗口表示,表示接收方还有多少缓冲区可以用来接收数据。网络的拥塞程度由拥塞窗口表示,它是发送方根据网络状况自己维护的一个值,表示发送方认为可以在网络中传输的数据量。发送方发送数据的大小是滑动窗口和拥塞窗口的最小值,这样可以保证发送方既不会超过接收方的接收能力,也不会造成网络的过度拥塞。
TCP 如何实现流量控制?
TCP 利用滑动窗口实现流量控制。流量控制是为了控制发送方发送速率,保证接收方来得及接收。 接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。
为什么需要流量控制? 这是因为双方在通信的时候,发送方的速率与接收方的速率是不一定相等,如果发送方的发送速率太快,会导致接收方处理不过来。如果接收方处理不过来的话,就只能把处理不过来的数据存在 接收缓冲区(Receiving Buffers) 里(失序的数据包也会被存放在缓存区里)。如果缓存区满了发送方还在狂发数据的话,接收方只能把收到的数据包丢掉。出现丢包问题的同时又疯狂浪费着珍贵的网络资源。因此,我们需要控制发送方的发送速率,让接收方与发送方处于一种动态平衡才好。
这里需要注意的是(常见误区):
- 发送端不等同于客户端
- 接收端不等同于服务端
TCP 为全双工(Full-Duplex, FDX)通信,双方可以进行双向通信,客户端和服务端既可能是发送端又可能是服务端。因此,两端各有一个发送缓冲区与接收缓冲区,两端都各自维护一个发送窗口和一个接收窗口。接收窗口大小取决于应用、系统、硬件的限制(TCP 传输速率不能大于应用的数据处理速率)。通信双方的发送窗口和接收窗口的要求相同
TCP 发送窗口可以划分成四个部分:
- 已经发送并且确认的 TCP 段(已经发送并确认);
- 已经发送但是没有确认的 TCP 段(已经发送未确认);
- 未发送但是接收方准备接收的 TCP 段(可以发送);
- 未发送并且接收方也并未准备接受的 TCP 段(不可发送)。
TCP 发送窗口结构图示:

TCP 接收窗口可以划分成三个部分:
- 已经接收并且已经确认的 TCP 段(已经接收并确认);
- 等待接收且允许发送方发送 TCP 段(可以接收未确认);
- 不可接收且不允许发送方发送 TCP 段(不可接收)。

http 断点重传是什么?
断点续传是HTTP/1.1协议支持的特性。实现断点续传的功能,需要客户端记录下当前的下载进度,并在需要续传的时候通知服务端本次需要下载的内容片段。
一个最简单的断点续传流程如下:
- 客户端开始下载一个1024K的文件,服务端发送Accept-Ranges: bytes来告诉客户端,其支持带Range的请求
- 假如客户端下载了其中512K时候网络突然断开了,过了一会网络可以了,客户端再下载时候,需要在HTTP头中申明本次需要续传的片段:Range:bytes=512000-这个头通知服务端从文件的512K位置开始传输文件,直到文件内容结束
- 服务端收到断点续传请求,从文件的512K位置开始传输,并且在HTTP头中增加:Content-Range:bytes 512000-/1024000,Content-Length: 512000。并且此时服务端返回的HTTP状态码应该是206 Partial Content。如果客户端传递过来的Range超过资源的大小,则响应416 Requested Range Not Satisfiable
通过上面流程可以看出:断点续传中4个HTTP头不可少的,分别是Range头、Content-Range头、Accept-Ranges头、Content-Length头。其中第一个Range头是客户端发过来的,后面3个头需要服务端发送给客户端。下面是它们的说明:
- **Accept-Ranges: bytes:**这个值声明了可被接受的每一个范围请求, 大多数情况下是字节数 bytes
- **Range: bytes=开始位置-结束位置:**Range是浏览器告知服务器所需分部分内容范围的消息头。
什么是TCP粘包?
TCP协议中,发送方发送的若干包数据到接收方接收时粘成一包,从接收缓冲区看,后一包数据的头紧接着前一包数据的尾。
因为TCP是面向流,没有边界,而操作系统在发送TCP数据时,会通过缓冲区来进行优化,例如缓冲区为1024个字节大小。
如果一次请求发送的数据量比较小,没达到缓冲区大小,TCP则会将多个请求合并为同一个请求进行发送,这就形成了粘包问题。
如果一次请求发送的数据量比较大,超过了缓冲区大小,TCP就会将其拆分为多次发送,这就是拆包。
关于粘包和拆包可以参考下图的几种情况

- 正常的理想情况,两个包恰好满足TCP缓冲区的大小或达到TCP等待时长,分别发送两个包;
- 粘包:两个包较小,间隔时间短,发生粘包,合并成一个包发送;
- 拆包:一个包过大,超过缓存区大小,拆分成两个或多个包发送;
- 拆包和粘包:Packet1过大,进行了拆包处理,而拆出去的一部分又与Packet2进行粘包处理。
对于粘包和拆包问题,常见的解决方案有四种:
- 发送端将每个包都封装成固定的长度,比如100字节大小。如果不足100字节可通过补0或空等进行填充到指定长度;
- 发送端在每个包的末尾使用固定的分隔符,例如\r\n。如果发生拆包需等待多个包发送过来之后再找到其中的\r\n进行合并;例如,FTP协议;
- 将消息分为头部和消息体,头部中保存整个消息的长度,只有读取到足够长度的消息之后才算是读到了一个完整的消息;
- 通过自定义协议进行粘包和拆包的处理。